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Abstract
We provide a mathematical framework for PT -symmetric quantum theory,
which is applicable irrespective of whether a system is defined on R or a
complex contour, whether PT symmetry is unbroken, and so on. The linear
space in which PT -symmetric quantum theory is naturally defined is a Krein
space constructed by introducing an indefinite metric into a Hilbert space
composed of square integrable complex functions in a complex contour. We
show that in this Krein space every PT -symmetric operator is P-Hermitian if
and only if it has transposition symmetry as well, from which the characteristic
properties of the PT -symmetric Hamiltonians found in the literature follow.
Some possible ways to construct physical theories are discussed within the
restriction to the class K(H).

PACS numbers: 02.30.Tb, 03.65.Ca, 03.65.Db, 11.30.Er

Since Bender and Boettcher claimed that the reality of the spectrum of the Hamiltonian
H = p2 + x2 + ix3 is due to the underlying PT symmetry [1], there have appeared in
the literature numerous investigations into various aspects of non-Hermitian Hamiltonians
defined on, in general, a complex contour. By a simple argument, the eigenvalues of any
PT -symmetric linear operator are shown to be real unless the corresponding eigenvectors
break PT symmetry [2]. The examinations in the first 4 years (1998–2001) were mostly
devoted to check this spectral property. For an extensive bibliography, see e.g. the references
cited in [3]. Then Dorey et al achieved the celebrated rigorous proof of a sufficient condition
for the spectral reality of a multi-parameter family of a PT -symmetric Hamiltonian [4].

Around the same period, the researchers in the field were gradually interested in the other
important problems such as inner products, Hilbert spaces, completeness of the eigenvectors
and so on. These problems were already noticed and accessed in a couple of the earlier works
[5–7], where a bilinear non-Hermitian form was introduced as a metric. Then the different
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groups arrived at the same sesquilinear Hermitian but indefinite form defined in the real line
R [8, 9], which was the origin of what has been sometimes called the PT inner product. In
particular, it was discussed in [8] that the state vector space with this indefinite metric is a
Krein space and that the usual quantum mechanical description would be obtained for PT -
symmetric Hamiltonians as far as we ‘ignore’ the neutral eigenvectors. Some mathematical
results of Krein space were also applied to a simple PT -symmetric model defined in a finite
real interval [−1, 1] ⊂ R in [10]. An apparent drawback of their metric is that it was defined
only for wavefunctions of L2(R). Regarding the indefiniteness, Bender et al in 2002 proposed
a new operator C, called charge conjugation, to construct a positive definite inner product
for an unbroken PT -symmetric model [11], expecting that a physically acceptable quantum
theory would be obtainable with it. However, the C operator depends on the Hamiltonian
under consideration, and the explicit construction of the C operator has been one of the current
main issues, see e.g., [12–14].

On the other hand, Mostafazadeh employed the notion of pseudo-Hermiticity and tried
to formulate PT -symmetric theory within its framework [15]. For the development, see [16]
and the references cited therein. However, the formulation has involved a defect from the
beginning, since the (reference) Hilbert space is basically defined in R and thus the formulation
cannot be directly applied to the case where a PT -symmetric operator is naturally defined on a
complex contour. This problem was recently addressed for a couple of models in [17]. Besides
this problem, we should call an attention to the more serious fact that until now little has been
known about what kinds of (non-normal) pseudo-Hermitian operators in infinite-dimensional
spaces certainly guarantee one of the key assumptions in the series of the papers, namely,
the existence of a complete biorthonormal eigenbasis of the operators, as was questioned in
[18, 19]. In this respect, we have presented a set of necessary conditions for the existence of
a biorthonormal eigenbasis of non-Hermitian operators in our previous paper [20]. Another
important caution about pseudo-Hermiticity, namely, boundedness of metric operators, was
recalled in [18]; see also [21].

In this letter, considering the present status in the field, we would like to propose a unified
mathematical framework for PT -symmetric quantum theory. Here by ‘unified’ we mean that
its applicability does not rely on whether a theory is defined on R or a complex contour,
on whether PT symmetry is unbroken, and so on. Furthermore, we clarify the relation
between PT symmetry and pseudo-Hermiticity in our framework. We then discuss some
possibilities for constructing physical theories within our framework based on mathematically
well-established results.

To begin with, let us introduce a complex-valued smooth function ζ(x) on the real
line ζ : R → C satisfying that (i) the real part of ζ(x) is monotone increasing in x and
�ζ(x) → ±∞ as x → ±∞, (ii) the first derivative is bounded, i.e., (0 <)|ζ ′(x)| < C(< ∞)

for all x ∈ R and (iii) ζ(−x) = −ζ ∗(x) where ∗ denotes complex conjugate. The function
ζ(x) defines a complex contour in the complex plane and here we are interested in a family
of the complex contours �a ≡ {ζ(x)|x ∈ (−a, a), a > 0}, which has mirror symmetry with
respect to the imaginary axis. This family of complex contours would sufficiently cover all
the support needed to define PT -symmetric quantum mechanical systems. In particular, we
note that �∞ with ζ(x) = x is just the real line R on which standard quantum mechanical
systems are considered.

Next, we consider a complex vector space F of a certain class of complex functions and
introduce a sesquilinear Hermitian form Q�a

(·, ·) : F × F → C on the space F, with a given
ζ(x), by

Q�a
(φ,ψ) ≡

∫ a

−a

dx φ∗(ζ(x))ψ(ζ(x)). (1)
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Apparently, it is positive definite, Q�a
(φ, φ) > 0 unless φ = 0, and thus defines an inner

product on the space F. With this inner product we define a class of complex functions which
satisfy lima→∞ Q�a

(φ, φ) < ∞, that is, the class of complex functions which are square
integrable (in the Lebesgue sense) in the complex contour �∞ with respect to the real integral
measure dx. We note that this class contains all the complex functions which are square
integrable in �∞ with respect to the complex measure dz along �∞ thanks to the property (ii)
of the function ζ(x). As in the case of L2(R), we can show that this class of complex functions
also constitutes a Hilbert space equipped with the inner product Q�∞(·, ·) ≡ lima→∞ Q�a

(·, ·),
which is hereafter denoted by L2(�∞). A Hilbert space L2(�a) for a finite positive a can be
easily defined by imposing a proper boundary condition at x = ±a.

Before entering into the main subject, we shall define another concept for later
purposes. For a linear differential operator A acting on a linear function space of a
variable x,A = ∑

n αn(x) dn/dxn, the transposition At of the operator A is defined by
At = ∑

n(−1)n dn/dxnαn(x). An operator L is said to have transposition symmetry if Lt = L.
If A acts in a Hilbert space L2(�∞), namely, A : L2(�∞) → L2(�∞), the following relation
holds for all φ(z), ψ(z) ∈ D(A) ∩ D(At ) ⊂ L2(�∞):

lim
a→∞

∫ a

−a

dx φ(ζ(x))Atψ(ζ(x)) = lim
a→∞

∫ a

−a

dx[Aφ(ζ(x))]ψ(ζ(x)). (2)

With these preliminaries, we now introduce the linear parity operator P which performs
spatial reflection x → −x when it acts on a function of a real spatial variable x as
Pf (x) = f (−x). We then define another sesquilinear form Q�a

(·, ·)P : F × F → C

by

Q�a
(φ,ψ)P ≡ Q�a

(Pφ,ψ). (3)

We easily see that this new sesquilinear form is also Hermitian since

Q�a
(ψ, φ)P =

∫ a

−a

dx ψ∗(−ζ ∗(x))φ(ζ(x))

=
∫ a

−a

dx ′ ψ∗(ζ(x ′))Pφ(ζ(x ′)) = Q�a
(ψ,Pφ)

= Q∗
�a

(Pφ,ψ) = Q∗
�a

(φ, ψ)P , (4)

where we use the Hermitian symmetry of the form (1) as well as the property (iii). However,
it is evident that the form (3) is no longer positive definite in general. We call the indefinite
sesquilinear Hermitian form (3) P-metric.

We are now in a position to introduce the P-metric into the Hilbert space L2(�∞). For
all φ(z), ψ(z) ∈ L2(�∞) it is given by Q�∞(φ,ψ)P ≡ lima→∞ Q�a

(φ,ψ)P . It should be
noted that we cannot take the two limits of the integral bounds, a → ∞ and −a → −∞,
independently in order to maintain the Hermitian symmetry of the form given in equation (4).
Hence, in contrast with the Hilbert space of ordinary quantum mechanics, the integration in
a non-symmetrical region contradicts the very definition of the P-metric. From the definition
of P and relation (4), we easily see that the linear operator P satisfies P−1 = P† = P , where
† denotes the adjoint with respect to the inner product Q�∞(·, ·), and thus is a canonical
symmetry in the Hilbert space L2(�∞) [22]. Hence, the P-metric turns to belong to the
class of J -metric and the Hilbert space L2(�∞) equipped with the P-metric Q�∞(·, ·)P is a
Krein space, which is hereafter denoted by L2

P(�∞). Similarly, a Hilbert space L2(�a) with
Q�a

(·, ·)P is also a Krein space L2
P(�a).
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Let us next consider a linear operator A acting in the Krein space L2
P , namely,

A : D(A) ⊂ L2
P → R(A) ⊂ L2

P with non-trivial D(A) and R(A). The P-adjoint of
the operator A is such an operator Ac that satisfies for all φ ∈ D(A)

Q�∞(φ,Acψ)P = Q�∞(Aφ,ψ)P ψ ∈ D(Ac), (5)

where the domain D(Ac) of Ac is determined by the existence of Acψ ∈ L2
P . It is related

to the adjoint operator A† in the corresponding Hilbert space L2 by Ac = PA†P with
D(Ac) = D(A†). A linear operator A is called P-Hermitian if Ac = A in D(A) ⊂ L2

P , and
is called P-self-adjoint if D(A) = L2

P and Ac = A [22]. Here we note that the concept of
η-pseudo-Hermiticity introduced in [15] is essentially equivalent to what the mathematicians
have long called G-Hermiticity (with G = η) among the numerous related concepts in the
field. Therefore, in this letter we exclusively employ the latter mathematicians’ terminology
to avoid confusion. Unless specifically stated, we follow the terminology after the book [22].

We now consider so-called PT -symmetric operators in the Krein space L2
P . The action

of the anti-linear time-reversal operator T on a function of a real spatial variable x is
defined by T f (x) = f ∗(x), and thus T 2 = 1 and PT = T P follow. Then an operator
A acting on a linear function space F is said to be PT -symmetric if it commutes with
PT , [PT , A] = PT A − APT = 0.

To investigate the property of PT -symmetric operators in the Krein space L2
P , we first

note that the P-metric can be expressed as

Q�a
(φ,ψ)P =

∫ a

−a

dx[PT φ(ζ(x))]ψ(ζ(x)). (6)

It is similar to but is slightly different from the (indefinite) PT inner product in [11], and
reduces to the one in [8, 9] if ζ(x) = x with a → ∞.

Let A be a PT -symmetric operator. By definition (5), PT symmetry, and equations (2)
and (6), the P-adjoint of A reads

Q�∞(φ,Acψ)P = lim
a→∞

∫ a

−a

dx[PT Aφ(ζ(x))]ψ(ζ(x))

= lim
a→∞

∫ a

−a

dx[PT φ(ζ(x))]Atψ(ζ(x))

= Q�∞(φ,Atψ)P , (7)

that is, Ac = At in D(Ac) for an arbitrary PT -symmetric operator A. Hence, a PT -symmetric
operator isP-Hermitian in L2

P if and only if it has transposition symmetry as well. In particular,
since every Schrödinger operator H = −d2/dx2 + V (x) has transposition symmetry, PT -
symmetric Schrödinger operators are always P-Hermitian in L2

P . The latter fact naturally
explains the characteristic properties of the PT -symmetric quantum systems found in the
literature; indeed they are completely consistent with the well-established mathematical
consequences of J -Hermitian (more precisely, J -self-adjoint) operators in a Krein space
[22] with J = P . Therefore, we can naturally consider any PT -symmetric quantum system
in the Krein space L2

P , regardless of whether the support �∞ is R or not, and of whether
PT symmetry is spontaneously broken or not. It should be noted, however, that the relation
between PT symmetry and J -Hermiticity (more generally G-Hermiticity) varies according
to in what kind of Hilbert space we consider operators. This is due to the different characters
of the two concepts; any kind of Hermiticity is defined in terms of a given inner product while
PT symmetry is not [19].

Before closing this letter, we shall discuss some possible ways to construct physical
quantum theories defined in the Krein space L2

P . First of all, it would be to some extent
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restrictive to consider only operators with transposition symmetry although we are mostly
interested in Schrödinger operators. For operators without transposition symmetry, PT
symmetry does not guarantee P-Hermiticity. Hence, the requirement of PT symmetry alone
would be less restrictive as an alternative to the postulate of self-adjointness in ordinary
quantum mechanics. Furthermore, there are several reasons that even the stronger condition
of P-self-adjointness would be unsatisfactory. In ordinary quantum mechanics, it is crucial
that an arbitrary physical state can be expressed as a linear combination of eigenvectors of the
Hamiltonian or physical observables under consideration. In this respect, it is important to
recall the fact that this absolutely relies on the consequences of the self-adjointness, namely,
the completeness of eigenvectors and the existence of an orthonormal basis composed of them.
Unfortunately, however, J -self-adjoint operators generally guarantee neither of them; even
the system of the root vectors of a J -self-adjoint operator does not generally span a dense set
of the whole Krein space, and more strikingly, completeness of the system of the eigenvectors
does not guarantee the existence of a basis composed of such vectors [22]. From this point of
view, the so-called class K(H) [23] would be one of the most promising constraints in defining
a physical theory.

A P-self-adjoint operator A of the class K(H) is, roughly speaking, such an operator for
which the Krein space L2

P admits a P-orthogonal decomposition into invariant subspaces of
A as

L2
P =

κ

[�]
i=1

[
Sλi

(A) � Sλ∗
i
(A)

]
[�]L2′

P , (8)

where [�] denotes P-orthogonal direct sum, κ is a finite number, λi 
∈ R are normal non-real
eigenvalues of A and Sλ(A) is a subspace spanned by the root vectors corresponding to each
eigenvalue λ:

Sλ(A) =
∞⋃

n=0

Ker((A − λI)n). (9)

Relative to the above decomposition of the space, the operator A has a block diagonal form
A = diag(A1, . . . , Aκ,A

′), where Ai = A|Sλi
�Sλ∗

i
and A′ = A|L2′

P
. The spectrum of the

operator A′ is real, σ(A′) ⊂ R, and there is at most a finite number k of real eigenvalues µi for
which the eigenspaces Ker(A(′) − µiI) are degenerate. We note that all the subspaces Sλ(A)

corresponding to the non-real eigenvalues are neutral, that is, all the elements areP-orthogonal
to themselves. It is evident that when κ = 0, the operator A has no non-real eigenvalues.
However, it does not immediately mean that PT symmetry of the system is completely
unbroken since eigenvectors belonging to real eigenvalues can break PT symmetry. In this
stronger sense, the class K(H) cannot characterize unbroken PT symmetry perfectly, but it
can certainly exclude a pathological case where an infinite number of neutral eigenvectors
emerge. Now, a problem is how to deal or interpret the remaining finite number of neutral
eigenvectors.

One possible way to construct a physical theory is to interpret the neutral eigenvectors
belonging to non-real eigenvalues as physical states describing unstable decaying states (and
their ‘spacetime-reversal’ states). After a sufficiently large time t → ∞ (or t → −∞), the
probability of observing these states would be zero. Thus in the time-independent description
it indicates that they must have zero norm for all t ∈ (−∞,∞), which may be consistent with
their neutrality. If such an interpretation turns to be indeed possible (though it is completely
different from the traditional treatment such as optical potentials, complex coordinate rotations
and so on), P-Hermitian quantum theory defined in the Krein space L2

P would be able
to describe, in particular, a system where stable bound states and unstable decaying states
coexist, such as nuclear and hadron systems.
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For the neutral eigenvectors corresponding to real eigenvalues, however, it seems difficult
to make a reasonable physical interpretation. A simple way to avoid this difficulty is just to
impose the additional condition k = 0. Another natural way of resolution is to consider the
quotient space Ker(A−µiI)/Ker0(A−µiI) in each degenerate sector, where Ker0(A−µiI)

is the isotropic part of Ker(A − µiI). This prescription is somewhat reminiscent of the
BRST quantization of non-Abelian gauge theories; the whole state vector space of the latter
systems is also indefinite and the positive definite physical space is given by the quotient space
KerQB/ImQB , where QB is a nilpotent BRST charge [24] and ImQB is the BRST-exact
neutral subspace of the BRST-closed state vector space KerQB [25] (for a review see, e.g.,
[26]). Under the condition k = 0 or the quotient-space prescription, the eigenvectors of A

are complete in the Krein space L2
P if and only if Sλ(A) = Ker(A − λI) for all eigenvalues

λ (at least for bounded A) [27]. In this case, the system of eigenvectors can constitute an
almost P-orthonormalized basis of L2

P [27], that is, it is the union of a finite subset of vectors
{fi}n1 and a P-orthonormalized subset {ei}∞1 satisfying Q�∞(ei, ej )P = δij or −δij , these two
subsets being P-orthogonal to one another such that1

L2
P = 〈f1, . . . , fn〉[�]〈e1, e2, . . .〉. (10)

As another possibility, we would like to mention about the CPT inner product approach
[11]. The linear charge-conjugation operator C was originally introduced to obtain a positive
definite inner product for the eigenvectors of PT -symmetric operators when PT symmetry is
unbroken. In this sense, we do not need this kind of operator since we have already formulated
the framework with a Hilbert space from the beginning, irrespective of whether PT symmetry
is spontaneously broken or not. Nevertheless, there could be another positive definite metric
which is more suitable for our purpose. Suppose there is a bounded, PT -symmetric linear
operator C with transposition symmetry in the Hilbert space L2 (thus C is P-self-adjoint).
Then a counterpart of the CPT inner product in our formulation would be the CP-metric;
indeed CP is self-adjoint in L2 and thus defines a metric, and we have

Q�a
(CPφ,ψ) =

∫ a

−a

dx[CPT φ(ζ(x))]ψ(ζ(x)). (11)

Then, if C is a P-orthogonal projection such that C : L2
P → L2′

P and the CP-metric is positive
definite in L2′

P (a trivial example is C = diag(0, . . . , 0,P ′) relative to the decomposition (9),
where P ′ = P|L2′

P
), the system would be essentially a P-Hermitian operator A′ defined in

L2′
P now equipped with the positive definite CP-metric. In contrast with the Hilbert space

L2, the CP-metric cannot be determined a priori since it depends on the structure of the
decomposition (9) and the subspace L2′

P for each given operator. Hence, it almost corresponds
to the CPT inner product in the case of unbroken PT symmetry.

Finally, we should note that in several models investigated so far in the literature, there
appears an infinite number of complex conjugate pair eigenvalues. In other words, the
dimension of the neutral invariant subspace is infinite, and they do not belong to the class
of K(H). Hence, such models would not be suitable for describing some physical systems,
though their mathematical aspects are certainly interesting.

It should also be noted that the way to set up an eigenvalue problem for a given linear
operator A is not unique. In this sense, our framework presented in this letter is just one
possibility. Our premise is just the non-triviality of D(A) and R(A) in L2

P . On the other
hand, the eigenvalue problems of PT -symmetric polynomial-type potentials in the literature,
such as [4], were usually set up within the framework of [28] without any metric. Hence, it is

1 Precisely speaking, when we employ the quotient-space prescription, the Krein space in (10) should be read as
L̂2
P = L

[⊥]
0 /L0 where L0 = 〈Ker0(A − µiI)|i = 1, . . . , k〉 is a neutral subspace of L2

P .
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interesting to investigate the relation among the different setups of eigenvalue problems. For
a recent study, see also [29].

A generalization of the framework to many-body systems (described by M spatial variables
xi) would be straightforward by introducing M complex-valued functions ζi(xi) which satisfy
similar properties of (i)–(iii) with respect to each variable xi (i = 1, . . . ,M).

Various physical consequences of PT -symmetric theory in our framework would be
reported in detail in a subsequent publication [30].
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